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We consider inviscid incompressible flow about an infinite non-slender flat delta 
wing with leading-edge separation modelled by symmetrical conical vortex sheets. 
A similarity solution for the three-dimensional steady velocity potential Q, is sought 
with boundary conditions to be satisfied on the line which is the intersection of 
the wing-sheet surface with the surface of the unit sphere. A numerical approach 
is developed based on the construction of a special boundary element or 'winglet' 
which is effectively a Green function for the projection of Vz@ = 0 onto the spherical 
surface under the similarity ansatz. When the wing semi-apex angle yo is fixed, 
satisfaction of the boundary conditions of zero normal velocity on the wing and 
zero normal velocity and pressure continuity across the vortex sheet then leads to 
a nonlinear eigenvalue problem. A method of ensuring a condition of zero lateral 
force on a lumped model of the inner part of the rolled-up vortex sheet gives 
a closed set of equations which is solved numerically by Newton's method. We 
present and discuss the properties of solutions for yo in the range 1.3" < yo < 89.5". 
The dependencies of these solutions on yo differs qualitatively from predictions 
of slender-body theory. In particular the velocity field is in general not conical 
and the similarity exponent must be calculated as part of the global eigenvalue 
problem. This exponent, together with the detailed flow field including the position 
and structure of the separated vortex sheet, depend only on yo. In the limit of small 
yo, a comparison with slender-body theory is made on the basis of an effective angle 
of incidence. 

1. Introduction 
1.1. Flow past a symmetric delta wing at incidence 

Despite the availability of powerful computers, the calculation of the incompressible 
flow past a wing in three dimensions remains a challenge. Even if we ignore the 
presence of turbulent boundary layers and the turbulent wake and regard the flow 
as laminar, severe difficulties arise because of the need to resolve the shear layers 
separating from the wing surface. 

A strategy for bypassing this difficulty is to regard the flow as inviscid and to 
replace the shear layers by vortex sheets. Of course, the problem of determining the 
location of the separation cannot be solved within the framework of inviscid theory. 
However, wings have highly curved edges and it is plausible to regard these edges 
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FIGURE 1. Inviscid model of vortex-sheet separation from a delta wing at incidence in a uniform 
stream. From Kuchemann (1975). On the forward portion of the wing the vortex-sheet shape is 
nearly conical. 

as candidates for separation lines. Whether a particular edge experiences separation 
or not must be decided ultimately by comparison with experiment. For example, 
a slender delta wing experiences leading-edge separation only at higher angles of 
incidence - the critical incidence being determined only by experiment - whereas the 
trailing edge always sheds a vortex sheet. Another complication is the occurrence of 
‘secondary’ separations from the smooth surfaces of the wing, whose location cannot 
be determined on the basis of inviscid theory (see Thompson 1975; Kirkkopru & 
Riley 1991, and the references cited there). Figure 1 sketches an example of the 
inviscid model, with vortex sheets separating from all three edges of a delta wing, 
taken from Kuchemann (1975). 

This inviscid strategy has been powerfully advocated by Kuchemann and was - 
in part - implemented in a series of papers emanating from the Royal Aircraft 
Establishment in the period 1960-1980. In particular, Smith (1968) was able to 
calculate, for the first time, the position of the leading-edge vortices produced by 
a slender delta wing and to calculate the extra lift produced; good agreement with 
wind-tunnel measurements was obtained. 

Smith deployed slender-body theory to simplify the calculation. In this theory, the 
delta wing is taken to be infinitely long so that the trailing edge is not allowed to 
affect the flow. The governing equations are simplified by retaining only cross-flow 
derivatives and - while the problem remains nonlinear ~ the calculation is effectively 
two-dimensional although the boundary conditions contain the conical character of 
the three-dimensional flow. 

1.2. The nun-slender delta wing 
We wish to remove the restriction of slenderness while - to make the problem 
tractable - we retain the assumption that the wing is semi-infinite, so that trailing- 
edge effects are negligible. We begin by introducing Cartesian coordinates (x, y, z )  
with corresponding unit vectors (i, j ,  k) and consider a wing of zero thickness in the 
plane z = 0 whose edges are y = kxtanyo, where yo is the semi-apex angle of the 
wing. The wing thus occupies the region -x tan yo d y d x tan yo  in the plane z = 0. 

In order to see the nature of the problem we are to attack, it is helpful to examine 
the simpler problem of determining the attached flow. Thus, we seek a harmonic 
potential 4(x, y, z) which has zero normal derivative on the wing, vanishes off the 
wing in the plane z = 0 and is allowed to be singular at the edges y = fx tan y o ;  
precisely, the speed IV$( is allowed to behave like d-1/2, where d is the distance of a 
field point from the nearest point on an edge. 
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To proceed, we introduce spherical polar coordinates (R, 8, y )  defined by 
x = RCOSB, 
y = Rsin0cosy, 
z = RsinBsiny, 

(1.1) 

We seek a similarity solution by writing 

4(R,8,v)=Rfl@(8,1y)  

with velocity components 

where n is the similarity index. The reduced potential @ satisfies an equation which 
follows from substitution of (1.2) into the Laplace equation 

with boundary conditions 

- = 0  on 0 6 0 G y 0 ,  y=O, (1.7) 
a@ 
av 

@ = O  on y o f 8 d n ,  (1.8) 

@ ( 4 y )  = @(O,n. -w); (1.9) 

and the symmetry requirement? 

the singularity at 8 = yo, y = 0 being as specified. 

1.3. The attached flow 
This problem was solved by Brown & Stewartson (1969, henceforth referred to as 
BS), who showed that n depended on yo and that as yo increased from zero to n/2, 
n(y0) decreased monotonically from 1 to i. Moreover, for yo << 1 they showed that 

(1.10) 

We note some features of this attached flow solution. 
(a) Since n < 1 for yo > 0, the velocity field V4 tends to zero as R + a. Thus 

we cannot match this solution to a uniform stream at infinity. The BS solution is 
an eigenfunction. The magnitude of the eigenfunction cannot be determined unless 
the flow past a finite delta wing is calculated. As long as attached flow is assumed, 
the BS solution will hold near the apex of a finite delta wing, whatever the angle of 
incidence. But if the angle of incidence is small, so that lifting-surface theory can be 
used, the region in which the BS solution dominates the flow can be estimated (Sells 
unpublished - see Riley & Smith 1985). 

( b )  The passage to the slender-body limit is non-uniform. The speed q behaves like 
R-y,2/4, so that, at fixed R, slender-body theory is achieved as yo + 0 whereas at fixed 

t We do not discuss the possibility of other solutions. 

n ( y o )  = 1 - ; y; + ;y; log yo + * * * . 
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yo ,  however small, q --$ co as R 4 0, violating the assumption of slender-body theory. 
Mathematically, we have 

lim lim R"-lV@ (0, y ,  y o )  # lim lim R"-'V@ (0, y ,  yo). (1.11) 
R+O yo'o yo+O R-0 

(c) The solution ceases to be an eigenfunction when n = 1, but then has a constant 
velocity field at infinity. In this case - and in this case only - a uniform flow of 
arbitrary strength in the plane of the wing can be added to the attached solution 
so that the resulting composite velocity field reduces to an incident uniform velocity 
field at infinity. 

1.4. Separated Jow 
Our objective is to calculate the separated analogue of the BS attached solution. 
We will again assume the form (1.2) and augment the boundary conditions (1.6), 
(1.7), and (1.8) by requiring zero normal velocity on and continuity of pressure 
across conical vortex sheets springing from the wing edges. The location of the 
vortex sheets is unknown as is the similarity parameter n - and we have to ver- 
ify that n(y0) < 1, so that our separated flow is an eigenfunction. The similarity 
parameter n is determined by both the linear kinematic requirement of zero nor- 
mal velocity on the wing and the nonlinear dynamic boundary conditions on the 
vortex sheets. The determination of the similarity parameter is unusual, but not 
unprecedented and a well-known example is Guderly's (1942) solution for a con- 
tracting spherical shock wave. Although the vortex sheets are conical in shape ~ 

indeed there is no other possibility given that we are seeking a steady flow so- 
lution for which no length scale is provided by either the equations of motion 
or by the boundary conditions - the flow itself is non-conical in the usual sense 
(that is, the velocity is not constant on rays originating from the apex), except 
where n = 1. 

If such a solution exists, then it follows that the structure of flow near the apex of 
a finite delta wing will be independent of the true angle of incidence. In particular, 
the position - but not the strength - of the vortex sheets can depend only on yo. The 
strength of the sheets will be determined only when the separated-flow eigenfunction 
emerges as the local form of the global solution for a finite delta wing. 

We have chosen to solve the problem by use of a vortex method. This is a little 
more difficult than in two dimensions. Although the transformation (1.2) projects 
the velocity potential onto the unit sphere, the vorticity is not normal to the surface 
of the sphere and the analogy with plane flow is lost. We cannot generate the 
projected potential by placing an array of point vortices on the wing and sheet - 
indeed, an isolated line vortex emerging from the apex cannot exist. This is because 
its circulation would have to depend on distance from the apex like R", violating 
Kelvin's circulation theorem. 

In $2, we tackle this problem and devise an element - which we call a winglet 
- which is analogous to the familiar horseshoe vortex of lifting-surface theory. It 
emerges that its potential can be expressed in terms of hypergeometric functions and 
we describe an effective method of computing these in $6. 

The boundary integrals turn out to be Hadamard principal parts and we show how 
to calculate these in 93 where - as a check on our formulation - we reconsider the 
BS problem. Excellent agreement for n obtained by our method and n obtained from 
the BS method is found. 

In $54 and 5, we give some details of our formulation. In particular, we tackle the 
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FIGURE 2. Construction of the elementary horseshoe vortex coABco. 

problems of describing the spiral part of the vortex sheet and of ensuring that the 
vortex sheet separates from the wing tip so as to avoid large adverse pressure gradients. 

In 96, we give details of two numerical methods while in $7 we describe our results 
and discuss their accuracy. We pay particular attention to certain properties the 
solution must possess, because these enable us to estimate the accuracy of our work. 

2. Construction of the boundary element 
2.1. The winglet potential 

We decided to take as our starting point an elementary horseshoe vortex modified to 
fit our geometry. We thus form a vortex line Lk lying in the plane z = 0, consisting 
of the half-line 8 = -y, co > P 2 8, the circular arc P = R, -y d 8 d y and the 
half-line 8 = y ,  R < i < co where we use polar coordinates (i, 8) in the plane z = 0 
(figure 2). The self-induced velocity of Lk is infinite on the curved portion, but this 
singularity disappears in the integration. The winglet has infinite self-induced velocity 
at points along its edges and thus resembles the straight elements of uniform strength 
sometimes used to represent a vortex sheet in plane flow. We examined the possibility 
of extending the treatment given by Van der Vooren (1980) but the resulting formulae 
are very cumbersome. We assume the vortex line has circulation dT relative to a sense 
of description in which the line 8 = -y is described in the ?-decreasing direction. The 
velocity potcntial d4(x; R )  (x = (x, y ,  z) as in (1.1)) due to the vortex line La is 

where S is the plane surface spanning the vortex line, S = (icos8,isin8,0), 

d2  = i c o s 8 - ~ c o s 0  isin8-RsinOcosy +R2sin2esin2y, (2.2) ( 
and where the field point x is expressed in spherical polars. Hence 
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We now consider the potential of a continuous distribution of vortex lines LA 
occupying the range 0 < k < m. In order to conform to the overall similarity we 
must take 

where Bo is a dimensional strength constant. The net velocity potential $(x) is then 
given by 

d r  = n BO I?-' dk, (2.4) 

If we invert the order of integration in i and fi we find that the k-integration can be 
performed, and we have 

where 

We recognize that p is the geodesic (or great circle) distance on the unit sphere 
between the field point x and the point (cos 8, sin 8, 0) on the surface of the element. 

The integral with respect to s can be evaluated (Magnus & Oberhettinger 1954, 
p. 68) and we find that, writing $ = R V ,  

@ =  

cosg =case cos8+sin8 sin8 cosy. (2.7) 

(2.8) 
Bo n (n + 1) sin 8 sin y 

4 sin nn 
Y P;' (- cos ,!I) dO ,̂ S_, sinp 

where Pn-' is the associated Legendre function of degree -1 and order n and where 
the dependence of j on 8 is given in equation (2.7). 

One property of (2.8) is worth noting here. From the fact that the velocity potential 
of the element is -(df /47c)Q(x), where a(x) is the solid angle subtended by S at x, 
we can see that the potential jumps by dT if we cross S in the z-increasing direction, 
while it is continuous off S .  From this we can deduce that @ increases by Bo as we 
cross the plane z = 0 in the z-increasing direction in the range -y < 8 < y. From 
symmetry, it follows that @ -+ iBo  as we approach the element from above and 
@ -+ - ~ B o  as we approach the element from below. This can be verified analytically, 
by the method described below. 

2.2. The limit y --+ 0 
It is instructive to examine a limiting form of equation (2.8). Suppose we fix (8, y)  
and let y -+ 0 and BO -+ co in such a way that 2y BO is finite and equal to B1. We can 
set 6 = 0 in (2.7) to find that f i  = 8 and so 

CP -+ BlP;' (-cosO)siny. (2.9) 

We can show that CP satisfies equation (1.3) and that @ is analytic except for 8 = 0. 
This last property is evident from the formula, easily derived from standard results 
(Magnus & Oberhettinger 1954, p. 60), 

(2.10) 

The hypergeometric function is singular at 8 = 0, but the expansion in the neighbour- 
hood at 8 = 0 can be deduced from results given by Abramowitz & Stegan (1964, 

(1 +m)~ ;~( -cose )  = ( C O ~ Q / ~ ) ~ ~ F ~  (-n,n+ 1,m+ 1;cos2e/2). 
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p. 559) and from (2.10), and we find that 

where the constants CO, c1, and c2 are given by 

2 s inm 
n ( n  + 1)n’ co = c1 = -cg n ( n  + 1)/4 

and (2.12) 1 
c2 = c1(-1+ 2C + dig(1- n)  + dig(2 + n))  - co/12, ) 

where C is Euler’s constant and dig is the digamma function. Thus, to leading order, 
(2.9) reduces to 

sin y 
@ = B1cI-J- 

6 ’  
(2.13) 

Now the geodesic distance from the origin to the point (8, y )  is 8, so we see that 
(2.13) is a vortex dipole, with its axis along y = 0. 

The higher terms in (2.11) represent curvature effects. This is an important obser- 
vation, because it means that the strongly singular part of the winglet potential 4) is 
a solution of Laplace’s equation in the plane. We can thus appeal to standard results 
when we have to deal with the singular integrals which arise when we attempt to 
evaluate @ and its derivatives on the wing, or sheets. 

Before we face the complexities of applying these ideas to the separated flow, it is 
instructive to reconsider the attached flow problem of BS from our viewpoint. We 
attempt this in $3. 

3. The attached-flow solution derived by a boundary integral technique 

We represent the attached flow by a distribution of winglets. We thus write 
3.1. The eigenvalue problem 

where A = Bo n (n  + 1)/(4 sin nn), where Bo is defined in equation (2.8) and where f(8) 
is the strength of the winglet distribution. This equation holds at points (8, y )  not on 
the wing. 

We now reconsider the boundary value problem posed in equations (1.6)-(1.9). It 
is clear that @(B,O) = 0 for 6 > yo, since B > 0 and the integrand is finite in this 
range of 8. The symmetry condition is satisfied if f(8) is an even function. Thus it 
remains to satisfy the condition on f ( 8 )  - (yo  - 8)’j2 as 8 + yo and the condition of 
zero normal velocity (1.7). 

We consider the limiting form of the y-component of the velocity as (0, y)  -+ (80,O) 

where 0 < 80 < yo. Now we can write 
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where E is a small fixed constant. On differentiating this expression with respect to ly 
we find that 

where we have taken the limit y + 0 in the first two terms, this being legitimate 
because the singularity of the integrand at (80, 0) is excluded. We cannot, however, 
take this limit in the third term, which requires detailed treatment. 

When 8 - 8 and ly are both small, the equation (2.7) defining p shows that 

P - - ( 0-8 A)2 +s in28y2+ . . - ,  

and we find that, on making use of the asymptotic expansion (2.11), 

(3.4) 

where Re denotes the real part, co is defined in equation (2.12) and where z = 9 + ily 

and x = 8+Oi are local complex coordinates. We see that, as anticipated in $2, the 
singular part of the potential behaves as if the problem is plane. We now appeal to 
the extended Plemlj formula to enable us to take the limit and we have, for ly 2 0, 

so that 

1 a@ 70 f(8)P;l (-COS(~-8,)) 

YO f(8) P 2 ( -  COS(6 - lj0)) 

___ - d&+O(&log&),  (3.7) sin 8 ay - A f ? o  sin (6 - 60) 

from which it follows, by letting E -+ 0, that the attached-flow problem is governed 
by the singular integral equation 

d8 = 0, -70 d 80 < yo. (3.8) f ,, sin(8 - 80) 

The double stroke on the integral indicates the Hadamard principal part. We must 
treat the case 80 = yo as the limit 80 -P yo - 0 when evaluating the integral; similarly 
for B0 = --yo. 

The solution of the integral equation must satisfy the requirement that 
f(e)(yZ - 82)-1/2 is bounded as 8 --+ +_go. We expect (3.8) coupled with this side 
condition to recover the BS solution. As a test of our formulation and because some 
of the implementation difficulties in the separated-flow case are anticipated in this 
simpler problem, we decided to solve (3.8) numerically. 

A 

3.2. The Hadamard principal-part integrals 
The main difficulty is the evaluation of the Hadamard principal part integral. To 
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evaluate the integrals, we constructed a cancellation function C(8, 80) by using (2.1 1) 
and the Taylor expansion of f(8) about 8 = 80; thus 

d2 
c ("80) = (f(80, + 6f'(80) + $62Y(80) + . . .) ($ + c1 log 7 + ci  + . . .) , (3.9) 

A h  

where 6 = O - 00, co and c1 are as defined in (2.12) and ci  = c2 + ~ 0 / 6 ;  we retained 
terms of order one in 6 in practice. 

This treatment fails at 60 = &yo, and we replaced the cancellation function by 

c, 8, yo = + g16 + g263/2 + . . .) ( C o p 2  + . * .) . (3.10) 

Introducing the cancellation function into the singular integral equation (3.8) pro- 
( A  1 ( 

duces the integral equation 

f(e^)P,-l(- cos(8 - C)) -C(8,80))  d O + f l  C(8,8o)db=O, L I (  sin(8 - 8 0 )  A 

--yo G eo G -yo. (3.11) 

The integrand in the first integral in (3.11) is bounded (and has only a weak singularity 
of the form d2 log 6). It can thus be evaluated by standard numerical methods. The 
second integral can be evaluated in closed form, using the rules for the evaluation of 
Hadamard integrals. 

3.3. Numerical solution 
We implemented two distinct schemes. Scheme A subdivided the range 0 < 8 < yo 
into N equal intervals and took as unknowns f = (f(O),f(68);..,f(N6~)) where 
68 = yo/N. Discretization of (3.11) using Simpson's rule leads to the non-standard 
eigenvalue problem 

A ( n ) f T  = 0, (3.12) 
where T denotes the transpose and A is an ( N  + 1) x ( N  + 1) matrix whose elements 
depend on n and yo. We used Gauss elimination to calculate det A(n) and then used 
Newton's method to find n such that det(A(n)) = 0 to machine accuracy. More 
precisely, if no is an initial estimate of n we iterate until 

ldet (A(n))  / det (A(nojj1 < 
Because of the singular behavior o f f  as 8 + yo, we obtained the derivative o f f  - 
and the coefficients in (3.10) - by fitting a polynomial of degree 3 in y = ( yo  - 8)lj2 

to the values o f f  near the tip. 
Scheme B differed only in that a Glauert series, Glauert (1946, p. 138) was used, 

(3.13) 

where 

thus building in the appropriate singularity. 
We decided to compare with the results obtained for yo = n/4 by BS. A re- 

computation of their formulation gave n = 0.81465526. Code A, using a 3-point 
series fit, with N = 10, 20,40 and 80 and with extrapolation gave n = 0.81466. Code 

* 
cosp = -O/yo, 
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Plane -7 = 0 

FIGURE 3. The geometry of the basic variables a1 and Q. 

B, with a 10-coefficient expansion, gave n = 0.814658. Efforts to improve this result by 
taking more coefficients were not successful, possibly due to conditioning difficulties. 

4. Description of the separated-flow problem 
4.1. The vortex sheets 

The separated inviscid flow is to be described by the introduction of two vortex 
sheets, one emanating from each edge of the delta wing. Each sheet is conical in 
shape and is expected to take the form of a conical spiral surface. The overall 
configuration is assumed symmetrical about the plane y = 0. We emphasize again 
that since n < 1, the flow is not conical in the sense that the velocity components 
are not constant along rays from the origin, but rather decay as R"-'. We decided 
to represent the separated vortex sheets by plane elements E,, each element having a 
linear distribution winglet strength. Our first task is to derive an efficient method of 
description of these elements. 

Suppose that iZE is the plane in which the element E, lies. Let A be the unit normal 
to E,  and suppose that IIE intersects the (0, x, y)-plane in a line whose unit vector is 

(figure 3). We can then define an orthogonal triad tl, A, i2, where t2 = A A il. Then 
& lies in the plane nE also. Now lies in the (O,x,y)-plane, so it must be of the form 

A 

il = (cosccl,sinccl,O); (4.1) 

011 is the first of our descriptive variables. We take as the second of our descriptive 
variables the angle ct3 between A and I;. We then find that 

P = (sin 011 sin a3, - cos 011 sin 013, cos a3), (4.2) 

and 
i2 = (- cos 013 sin x l ,  cos a3 cos al, sin 013). (4.3) 

We can now express the position x' of any point in the plane IIE in terms of local 
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polar coordinates (R', p'), where 

x' = R' (* i l  cos p' + 2, sin p' ) . (4.4) 

In particular, the element E, can be defined by p1 < p' < p2. The polar angles PI,  p2 
comprise our third and fourth descriptive variables. 

We can now express the velocity potential at a general point x on the unit sphere 
in terms of our chosen variables. We need only repeat the analysis of $2 to find 

(4.5) 

where 

cos j? = cos p' (cos 8 cos a1 + sin 8 cosy sin al ) + sin p' (- cos 8 cos a3 sin a1 
+ sin 6 cos y cos 1x3 cos + sin 8 sin y sin a3), (4.6) 

and 

cos [ = cos 8 sin a1 sin a3 - sin 8 cos y cos a1 sin a3 + sin 8 sin y cos a3. (4.7) 

Here again, B is the geodesic distance between the field point (cos6,sinflcosy, 
sin 6 sin y )  on the unit sphere and the point on the element E,  with local polar angle 
p.  We note that if we set a1 = 0 and a3 = 0, these results reduce to those given in 92. 

We plan to solve the problem by Newton iteration, so we must decide precisely how 
the positions of the elements E, comprising the sheet are to be varied. Now in two 
dimensions (Pullin 1978) a successful strategy is to prescribe the angular positions 
of the vortex elements relative to the centre of the rolled-up portion of the vortex. 
We first choose the total angle z, which we denote by zM.I-l, subtended by the set 
of elements E1,E~,.*',EMM--I at P ,  the extremity of the final element EM. Next, a 
subdivision of TM-I  into M - 1 subintervals dz,,dq; - ,dzMM-l, E7-l dz, = zm-1 is 
prescribed. Throughout the iteration the dz, remain fixed, so each element continues 
to subtend its chosen sub-angle. 

Adaptation of this procedure to spherical geometry is straightforward, but the 
formulae are cumbersome. In particular, the imposition of constant included spherical 
angle involves solving a transcendental equation. 

4.2. Pseudo-polar coordinates 
We bypassed this difficulty by introducing 'pseudo-polar' coordinates. Let (4, ys) be 
the spherical polar coordinates of the junction of the elements E,  and E,+1. Define 
( L F S )  by 

Bs = 8, cos ys, 

2, = 8, cos y,, 

j s  = 8, sin v,, 

j c  = 6,, sin y,, 

(4.8) 

(4.9) 

and define ( i , , j O )  by 

where (&,,q),) are the spherical polar coordinates of P. 
If we ignore curvature, we find 

As = 6, cos yo + rs cos v,, j S  = eL' sin wL' + r ,  sin vs, (4.10) 

where r, is the distance of the junction s from (6,,yU), where 
S 

v, = -p + dz,, , s  = l , . . . M -  1, (4.1 1) 
t = l  
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0 

f o  f i  f 2  f3=go 

FIGURE 4. The case N = 3, M = 4 and d.rl = d.r2 = dT3 = F = 7313. There are five geometric 
unknowns: r1,rl and r3, and the spherical polar coordinates @,,y, of P, and six unknown winglet 
strengths: f l ,  f%f3 and g m  and g3. 

and where ,u is defined by 

cos p = ( y o  - 8, cos yo)  / O ,  sin ly,. (4.12) 

We now switch our point of view and regard (4.10)-(4.12) as dejning ( O S ,  y,) in terms 
of r,. It will not matter that in the variation the included spherical angles are not 
exactly preserved during variation of r, and that rs is not true geodesic distance. 

We summarize our description of the geometry: let the subintervals dz,,t = 
1, . . * M - 1 be specified. Then if (do., yo.) are given and r,, s = 1,. * + M - 1 are given 
then, first, p can be calculated from (4.12), followed by v,, s = 1, . . . M - 1 from (4.11). 
The values of (2,, js) can then be determined from (4.10) followed by calculation of 
(&, ys), s = 1,. . . M - 1 from (4.8). Finally, we must express our parameters mi"', c$), 

py) and p t )  defining element s in terms of the spherical polar coordinates (Os-l,ys-l) 

and (Os,lys) of its edges. We give the details of the calculation in Appendix A, noting 
here only the point that care must be taken to ensure that the normal n̂  varies 
continuously as the sheet is traversed. Once the mi"), at) ,  p f )  and py) are known, the 
contribution of each element E, to the potential @ and the velocity V@ at any point 
on the surface of the sphere can be calculated from (4.5). 

We can now define the state of the discretized sheet. We can subdivide the semi- 
wing into N equal portions, each of angular extent yo/N. At the N + 1 extremities 
of these portions we introduce winglets of strength f s  (s = 0,1,. . . , N )  with fo  = 1 
as a normalizing condition; since we are dealing with an eigenfunction, this step 
is essential. The elements El ,  E2, * . a 7  EMM-l, EM have linear variations of winglet 

terminal element has - for reasons discussed later - a constant winglet strength. 
The state of the discretized flow is thus determined by the unknowns n, f l ,  f 2 ,  . . -, 

f ~ ,  g l ,  g 2 ,  - .  ., gM-1, r l ,  1-2, . * ., r M - 1 ,  On, v V ;  the case N = 3 and M = 4 is shown in 
figure 4. There are thus N + 2M + 1 unknowns, which must be determined from the 
boundary conditions. These boundary conditions are that the normal velocity vanishes 
at the N + 1 points on the wing and the 2M conditions that the 8- and ly-components 
of the vortex force vector on each element of the vortex sheet vanish (to some 
approximation). We discuss the boundary conditions in more detail in the next section. 

strengths Over the ranges ( f N , g l ) ,  k l ,  g 2 ) ,  ' .  ' 7  (gM-2,gM-1)?  ( g M - I , g M - l ) >  where the 
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5. The boundary Conditions 
5.1. Boundary conditions on the wing 

Suppose that, as anticipated in $4, we represent the wing by 2N + 1 equally spaced 
winglets, the winglet strength distribution being symmetric, and the right-hand vortex 
sheet by M elements, on each of which there is a linear variation of winglet strengths, 
these strengths being continuous across the junctions of the elements (figure 4). The 
left-hand vortex sheet elements E, are just mirror images of the right-hand vortex 
sheet elements E, in the plane y = 0. 

Given this configuration, it is straightforward to calculate the velocity on the wing 
at the points 6 = syo/N, for s = 0,1,2, * . , N - 1. The self-induced normal velocity is 
calculated by an appropriate modification of the method used to study the BS problem 
and (4.5) is used to calculate the contributions to the normal velocity on the wing from 
the elements E,, E ,  (s = 1,2,. . . , M ) .  However, the right-hand leading edge 6 = yo 
requires a more detailed discussion. To pursue this, we note that, according to the 
analysis of 53, the self-induced velocity v,(ê ) normal to the wing is given by the formula 

h 

271u,(8) = -7 f(Yo’ + - f ( -yo!  + f’(y0) log Jyo - 61 - f’(y0) log Jyo + 61 + H(e^), (5.1) 
y o  - 0 -yo - 8 

where H ( 6 )  is bounded as 8 + *yo. We can see from this result that at the join of 
the wing to El (or at the join of E, and E,9+1) the singular terms will cancel i f f  and 
f’ are continuous across the join. 

By construction f(yo)  = go, so the point-vortex terms cancel. However, we cannot 
force our solution to satisfy the condition f’(y0) = gb, so the log terms do not cancel. 
To deal with this, we compute the normal velocity at the join as if f’(yo) = g;l 
and then check the accuracy with which this consistency condition is satisfied in the 
converged solution. 

We know from a local analysis (which to leading order is identical with the plane 
problem) that f(8) w f(yo)+al (yo-i)+az ( y 0 - - 8 ) ~ / ~ ,  while the local form of the separat- 
ing sheet is y w hz(6-yo)’/2. Again, we cannot impose these properties on our solution, 
but we can examine the extent to which they are satisfied in the converged solution. 

5.2. Treatment of the free elements 
We now turn to the boundary conditions on the elements E l ,  E2,. . . , E M - 1 .  We apply 
at the centre of each element the conditions 

v, = 0, (5.2) 

P+ = P- 7 (5.3) 

and 

where ‘+’ and ‘-’ denote the two sides of the element and where u, denotes normal 
velocity. Bernoulli’s theorem enables (5.3) to be expressed in the form 

(5.4) 
where ut is the tangential velocity. In view of (5.2), the pressure condition can be 
written as 

(5.5) 

(5.6) 

n2@: + (ut>,’ + (v,,): = n 2 Q 2  + (ut)-’ + ( u , ) ~ ,  

n2 (@+ + @-) (@+ - @-I + ( ( V t ) +  + ( V d -  j ((ut)+ - (utj-) = 0. 

n g m @ e  + gL(u,), = 0, 

or, denoting the mid-point of the element by ‘m’: 
2 
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A2 

FIGURE 5. The intersection of the control volume with the surface of the unit sphere. The ‘keyhole’ 
domain is split, for convenience, into the ‘barrel’ A1 and the ‘slot’ Az. 

where the suffix ‘e’ means that the self-induced contributions can be omitted in the 
calculation. This is legitimate since, for any distribution of winglet strength on a 
plane element, @ is antisymmetric with respect to the plane. This is a considerable 
simplification in practice. Note however that the self-induced component of the 
normal velocity cannot be omitted in the implementation of (5.2). 

5.3. Inner portion of the sheet; the point vortex 
We must now discuss what is perhaps the major difficulty - the devising of an 
approximate representation of the tightly rolled-up inner portion of the vortex sheet. 
In two dimensions, the tightly wound portion can be represented by a point vortex, 
while in slender-body theory, a description of Brown & Michael (1959) type is 
possible. Our method is to devise a terminal element in the spirit of Brown & 
Michael’s approach, although the details are more complicated. 

We choose the terminal element E M  to have uniform winglet strength g M - 1 .  The 
spherical potential @ then will, as was shown in 92, experience a jump gM-1 across 
the element which, to this extent, resembles the cut joining the point vortex to the 
wing in the Brown & Michael treatment. However, the vorticity in the element is not 
zero because of the presence of vorticity lying in the surface of the sphere. 

We take as our boundary condition the vanishing of the vortex force on the element. 
To see why this is correct, we start by noting that Euler’s equations give 

o A U  = -VH, (5.7) 

where o is the vorticity and H is the head. Thus for any control volume V bounded 
by a surface 3V 

o A udV = - H kdS. (5.8) J v av s 
In Appendix B we show how the boundary conditions on EM are derived from (5.8) 
and the geometry of figure 5. The final result is two equations, reproduced below as 
(5.9) and (5.101, which relate the induced velocity components at the central element 
VE, WE, and Qe to the other parameters of the problem: 

and 
v, - n2 y@,(O) = 0. (5.10) 

This approximation is consistent, since we expect the element E M  to shrink as the 
resolution is increased. 
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The problem is now completely formulated and we explain our numerical imple- 
mentation in $6 and discuss our results in $7. 

6. Numerical implementation 
6.1. Computation of P,-"(- cos 8) 

Both Scheme A and Scheme B require the rapid computation of the Legendre function 
P;"(-cos8) in the range 0 < 8 < n. Our method of achieving this was based on 
a table look-up. This exploits the representation of the Legendre function in terms 
of the hypergeometric function 2f ' l  (-u, b, c, cos2( i O ) >  given in equation (2.10). This 
shows that the singular behaviour of the Legendre function as 0 + 0 is due to the 
factor c0tn2(8/2) so that interpolation on a table of hypergeometric function values 
should be adequate. 

We divided the interval [O,n] into NTAB equal sub-intervals of size A .  We com- 
puted table values at n,n - A ,  n - 24,  .. . using the power series expansion of the 
hypergeometric function, which was rapidly convergent, since 0/2 was close to n/2. 
At n - 8 = 0 . 2 ~  we switched to integration of the hypergeometric differential equation 
- we could not start this integration at O = n because of the regular singular point. 
This integration proceeded in the &increasing direction until the value 0.002n was 
reached. We then switched to the appropriate expansion, given by Abramovitz & 
Stegun (1964, p. 559), to cope with the regular singular point 6 = 0. We thus had 
two values of the hypergeometric function at the switch value of 8 and we compared 
these as a running check, terminating the computation if the difference exceeded lop9. 

Five-point Lagrange interpolation was used to provide the values of the Legendre 
function at a general value of 0. Some loss of accuracy can be expected near 8 = 0 
because of the logarithmic terms in the expansion of the hypergeometric function. 
We used values of NTAB in the range 5 x lo3 to lo4 to deal with this difficulty. The 
method was checked by comparison with values from MATHEMATICA and by verifying 
that the potential of a boundary element of uniform strength was a solution of (1.6). 

6.2. Scheme A 
Schemes A and Scheme B were independently adapted to the separated flow calcula- 
tion, with the aim of providing mutual checks. We give brief details of these methods 
insofar as they differ from those already described for the attached flow. In Scheme A 
the interval 0 < 8 < yo was divided into N intervals which were either of equal extent 
in 8 or which were clustered, using a cosine stretching, near the wing tip in order 
to increase locally resolution near the separation line. The influence integrals, of the 
type given by the left-hand side of (3.11) for field points on the wing, and by (4.5) for 
field points off the wing (at the mid-points of the sheet elements), were calculated by 
Simpson's rule. An exception was the calculation of the contribution of the wing to 
the normal velocity at the tip . Here a polynomial of degree 6 in y = ( y o  - of 
the form 

6 

f(8) =  YO) + C aj (YO - ~)ci+1)'2 (6.1) 
j = l  

was fitted to fi7 i = N - 5,. . , N .  A special cancellation function was then constructed 
based on this form of f(8) but with the log term omitted as described in $5 in relation 
to (5.1). The details are cumbersome but straightforward and are not given here. 
Integrals of the type (4.5) for @ and for V@ give the velocity induced at the wing 
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surface by the vortex sheet elements E, and E, (mirror image of E, in the plane y = 0), 
s = 1,. . . M .  These integrals were calculated by subdividing each element E, into N 
equal points and using Simpson’s rule. Again 8 = yo (wing tip) was exceptional, and 
here the contribution of each the first five elements E1,...,E5 was computed with 
4 x N-point Simpson’s rule to provide extra accuracy for this sensitive calculation. 
This gives ( N  + 1) residuals. 

The boundary conditions (5.2) and (5.6) were applied at the element midpoints 
s = 1 , .  . . M - 1 as follows. First the midpoint of the ith element, E,,  and the two unit 
vectors at this midpoint normal to the element, and tangential to both the element 
and the sphere, were determined. Next @, V@ at the ith midpoint were calculated 
from contributions of the wing and of the sheet element sets E,, E,, s = 1, M .  The 
normal self-induced velocity was calculated using the cancellation function of the type 
(3.9) adapted to the linear f-distribution on the element. Resolving in the normal 
and tangential directions and taking care to omit the self-induced tangential velocity 
and potential of E, as described in $5 then gives ( @ e , ~ n , ( ~ t ) e )  at the midpoint. For the 
right-hand element set, all integrals were calculated by N-point Simpson’s rule, while 
for the left-hand set N/6point Simpson’s rule was used after having checked that 
this entailed no loss of accuracy. Equation (5.2) then provided M - 1 residuals, and 
(5.6) in the approximate form 

(6.2) 1 2  3 n (gl-1 + 81) @e. + (8, - & I )  ( Q j e  = 0 

provided a further M - 1 residuals. Finally (5.9) and (5.10) were applied, calculating 
all relevant integrals as for the application of (5.2) andd (5.6), giving a further 2 
residuals, making a total of N + 2 M + 1, which when forced to zero, will determine 

In Scheme A the residuals were forced towards zero using Newton iteration. Con- 
the N + 2 M + 1 unknowns n, fl ,  f2 ,  . . ., f ~ ,  gl, g2, . . ., gM-1, TI ,  r2, . . ., ~ M - I ,  @, vC. 

vergence was accepted when 

maX(O<k<N+2M+l) I 8 k I  d c, (6.3) 

where 9& is the kth residual and E a specified tolerance. Generally E = but 
this could not always be achieved (see 97). The Jacobian was constructed along with 
the residuals using a combination of analytic and centred finite-difference methods. 
We shall characterize the Scheme A solutions by the notation [ N ,  M - 1, mr],  where 
nzT fi: T ~ - ~ / ( ~ Z )  is the number of complete turns of the sheet represented by ~~4-1, 
the total pseudo-angular extent of the rolled-up portion of the vortex sheet. In some 
cases to be discussed the angular extents of the sheet elements were not uniform over 
its whole extent but were somewhat clustered near the tip. The average number of 
sheet elements per turn is approximately ( M  - l ) / m T .  The strategy used to obtain 
solutions was to start with the attached flow solution for yo  = n/4, and then guess 
the position of the central vortex for [ N ,  M - l , m T ]  = [32,0,0], corresponding to 
a Brown-Michael (1959)-type solution with only a single plane winglet connecting 
the wing edge to the central vortex. With some experimentation this was successful, 
leading to a converged solution. Then a solution with [ N ,  M - 1, m ~ ]  = [32, $0.251 
was found by guessing the local shape and strength of a small sheet emanating 
from the tip. Once this solution was found, initial approximations for solutions 
with increasing M were generated by extrapolation of the sheet shape and strength 
from those with smaller M .  When several turns of the sheet were generated, the 
asymptotic inner form of the spiral (see $7) was fitted to the solution and the sheet 
extended further. 
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6.3. Scheme B 

The objectives of Scheme B were two-fold. The first and most important objective 
was to provide a check on Scheme A. Apart from the routines to calculate the 
Legendre functions, which could be readily checked as described, the two codes 
were completely independent. The second objective was to test the robustness of our 
formulation against changes of detail at the point of greatest vulnerability, which we 
believe to be the wing tip. With this view, we replaced the boundary condition of 
zero normal velocity by the requirement that df/da be continuous at the tip, where 
G is arclength along the sheet. Also, the structure of Scheme B enabled us to force 
the correct singularity in the behaviour o f f  as 6 -+ yo. 

The motivation for Scheme B starts from the observation that a plausible expansion 
for the winglet strength f(6) is 

323 

f(0) = a0 + a1 y + a2y2 + a 3  y 3  + a 4  y4 +.  * .  , (6.4) 

where y = (1 - ( Q / ~ o ) ’ ) ~ ’ ~ .  If 61 = 0, then f(6) has the correct behaviour at the wing 
tips 0 = $.yo. However this form would be ill-conditioned and we changed to the 
Glauert variable given by 

6 
cosp = --, 

YO 
(6.5) 

and expressed the expansion in the form 
A h  

f = bo + b1e2 + sin3 p (20 + tl sin p + 2 2  sin’ p + . . .) . (6.6) 

Formally, we can re-expand the series in the above equation as a half-range cosine 
series in which only even terms arise by symmetry. Thus we arrive at the form used 
in Scheme B. This is 

Unfortunately the series cannot be expected to converge rapidly, because the half- 
range expansion of sinp has an jfh Fourier coefficient of order j-2. Since the series 
must be twice differentiated to obtain the f-derivatives needed in the construction 
of the cancellation function it is surprising that the ansatz performed as well as 
it did. 

An advantage of this indirect representation is that the number of integration 
points on the semi-wing N M E S H  + 1 is not restricted to the number of points N + 1 
at which boundary conditions were satisfied. However the number of coefficients in 
the truncated form of the expansion must be N + 2, to cope with the N zero normal 
velocity conditions at internal points of the semi-wing, the condition of continuity of 
df/ds and the normalization condition on f.  

In calculating the effect of the left-hand sheet winglets on the wing and the right- 
hand sheet, Simpson’s-rule integration with 8 points was used. Simpson’s integration 
with 2N + 1 points was used for calculating the effect of each right-hand winglet on its 
neighbours and on the wing. However an analytical approximation, whose error was 
0 ( p 4  log(p)) for a winglet of angular extent p, was used to calculate the self-induced 
velocity of each winglet. A numerical one-sided Jacobian was used to simplify the 
coding at the expense of greatly increased computing time. In view however of the 
schemes limited role, this inefficiency was acceptable. 

At first the boundary conditions on the wing were satisfied at equally spaced points 
on the wing, but conditioning was poor. Following a suggestion of Dr A. Iserles, points 
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N N M E S H  n 0, W1* 

8 128 0.58541 0.72624 0.37454 
16 256 0.58518 0.72661 0,37450 
32 512 0.58506 0.72680 0.37448 
64 1024 0.58707 0.72368 0.37480 
64 2048 0.58503 0.72684 0.37447 

Scheme A Extrapolated 0.58491 0.72713 0.37437 

TABLE 1. Comparison of Scheme A and Scheme B. All the runs had M = 21. First five rows are 
Scheme B results. The Scheme A results are Richardson extrapolated to infinite N assuming that 
the error is proportional to N-I. The reason why extra integration points are needed in the case 
N = 64 is not known. 

equally spaced in the Glauert variable r were used and this cured the conditioning 
difficulty. It transpired that a very large number of integration points were needed 
to cope with the rapid oscillations of the cosine functions near the wing tips, the 
spacing of which, in 8, was O ( W 2 ) .  Better results were obtained with integration 
points spaced equally in p, but the table size had to be large enough to ensure that 
interpolation in the last few intervals was avoided, for the reason given previously. A 
comparison with a special run of Scheme A in which M - 1 was fixed at 21 and N 
varied is shown in table 1. The agreement is satisfactory. 

7. Results and discussion 
7.1. The case yo = n/4 

We seek numerical approximations to an exact solution with both f and the shape 
of the sheet continuous. We recognize however, that an exact solution will contain 
arbitrarily small length scales within the inner rolled-up portion z > zu-1 (represented 
here by the plane terminal element ELM) which are unresolved with any finite choice 
of mT. It is our aim, not always achieved here, to construct solutions with numerical 
values of [ N ,  M - 1, mT = 11 sufficiently large so as to achieve at least three-figure- 
accurate numerics. In order to discuss the basic properties of our numerical solutions 
we begin with Scheme A solutions for yo = n/4. We discuss two classes of solution, the 
first of the form [ N ,  M -  1, mT = 11 for Scheme A with N and M increasing uniformly, 
in order to demonstrate convergence with a fixed extent of the sheet. These are 
summarized in table 2 (110 = ~ / 4 ) ,  which shows the variation of the solution parameters 
(n,  O,, yu )  with N ,  M .  Also shown are the values obtained by Richardson extrapolation 
from the [64,20,mT = 11 and [128,40,mT = 11 solutions, assuming convergence as 
( 1/N)2. There is satisfactory agreement between the calculated and extrapolated 
values for the [256,80,m~ = 13 solution. The value tabulated as [03,03,m~ = 11 may 
be assumed third-order accurate in 1,”. It may be seen that convergence to three- 
figure accuracy is achieved with the [128,40, mT = 11 solution. We conclude that, with 
zM-] fixed, we can obtain three-figure accuracy with about 35 points per turn of the 
sheet. In figure 6 we show the vortex sheet shapes in the (8,y)-plane plane for these 
solutions. The shapes for the [128,40, mT = 11 and [256,80, mT = 11 solutions are 
indistinguishable on the plotting scale shown. 

Next we keep N = 128 fixed and the number of sheet elements per turn ( M -  l ) /mT 
fixed at about 35, and increase mT. Table 3 shows the principal parameters for this 
sequence of solutions. Convergence is not monotonic as mT is increased, at least 
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N M - 1  mT n O,, Yv 
64 20 1 0.585203 0.726605 0.374477 

128 40 1 0.586281 0.725343 0.373749 
256 80 1 0.586591 0.724987 0.373549 
256 80 1 0.586551 0.725028 0.373567 
cc cc 1 0.586640 0.724922 0.373506 

TABLE 2. Principal solution parameters for Scheme A solutions [N,  M - 1, mT = 11 with yo = n/4 
. The fourth row gives the values obtained by Richardson extrapolation from the [64,20,m~ = 11 
and [128,40, mT = 11 solutions assuming convergence as ( 1/N)2. The fifth row shows extrapolation 
to N = co. 

0.8 

0.6 

0.4 

0.2 

I I I I 

0.4 0.6 0.8 1 .o 
6 

FIGURE 6. Vortex sheet shapes in the (@,y>)-plane, yo = n/4. All three solutions have 
ZM-~ = 7.3684210. X, [N,M - 1 , m ~ ]  = [64,20,1]; A, [N,M - l,mT] = [128,40,1]; 0, 

[ N ,  M - I, YHT] = [256.80,1]. 

N M - 1  mT n 6, Y O  

128 41 1 0.585622 0.723412 0.370934 
128 75 2 0.581320 0.724428 0.369761 
128 109 3 0.579629 0.724317 0.369006 
128 143 4 0.578946 0.724417 0.368779 
128 177 5 0.578583 0.724472 0.368644 
128 211 6 0.578369 0.724507 0.368555 

TABLE 3. Principal solution parameters for Scheme A solutions [ N ,  M - 1,mT = 11 with N = 128 
fixed and BIT increasing. yo = n/4. The number of elements per turn of the sheet (A4 - l)/mT is 
held nearly constant at about 35. 
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FIGURE 7. Vortex sheet shapes in the (O,W)-plane, yo = n/4. -, [N,M - l ,mT] = [128,211,6]; 
-, [ N , M  - 1,mT] = [128,109,3]; - - - - -, [N,M - 1 , m ~ ]  = [128,41,1]. 

for 8,. The [128,109, m~ = 31 solution gives three-figure-accurate approximations to 
our most refined solution, [128,211,mT = 61, except for n, where the discrepancy is 
of order 0.2%. In figure 7 we compare the shapes for solutions with mT = 1,3,6. 
The shape of the outer turn for the mT = 1 solution is rather different from that for 
mT = 6 solutions; note that these differences are much larger than the corresponding 
discrepancies between the corresponding (&, yo)  positions in table 3. It may also 
be seen that there are significant differences when comparing (8,,yU) values of the 
[128,41, mT = 11 solution of table 3 with the [128,40, m T  = 11 solution of table 2. This 
is because the the extent of the sheet, given by T ~ - ~ ~  is different for the two solutions 
as may be seen by comparing the shapes in figures 6 and 8. This difference in extent is 
due to the fact that the elements of the [128,41, mT = 11 solution are of nonuniform 
angular extent, having been clustered near the wing tip in order to improve accuracy 
for production runs. This can be seen in figure 8 which shows details of the vortex 
sheet for three solutions near the wing tip. There is good agreement in this region. In 
figure 9 we display the variation of winglet strength f(.) along the right half-wing 
and along the vortex sheet, where (T is the arclength along the intersection of the 
conical wing-sheet surface with the unit sphere, measured from the wing tip. Values 
CT < 0 correspond to the wing. The tangential velocity difference across the composite 
wing-separated flow vortex sheet d f / d  G (the wing is of course also a conical vortex 
sheet that can support a pressure difference) can be seen to change sign just inboard 
of separation. It will be later seen that the occurrence of df/d (T = 0 very near the tip 
is characteristic of all numerical solutions discussed here. A detail of the maximum 
in f(.) for three solutions with yo = n/4 is shown in figure 10 from which it may 
be seen that the numerics produce a smooth variation of df /do = 0 at the tip as 
required (see discussion following (5.1)), at least on the plotting scale. This will be 
discussed further later. The [128, 109,mT = 31 and the [128,211,mT = 61 solutions 
show agreement to four figures in f-values near the tip. 
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FIGURE 8. Near-tip detail in the (O,y)-plane, yo = x/4. -, *, [ N ,  M - l ,mT]  = [128,211,6]; 
- - - -  -, A, [ N , M -  1,mT] = [128,109,3]; - - - - - ,  X, [ N , M -  1 , m ~ ]  = [128,41,1]. 

7.2. 0 < yo < n / 2  
The results of the previous subsection indicate that at least three-figure accuracy in 
all computed quantities can be obtained with [128,109,rn~ = 31 so these parameters 
were used, where possible, for a range of values of yo. Continuation in yo using two-, 
three- and four-point extrapolation was achieved without difficulty for yo < 45" down 
to a minimum of yo = 1.3" below which, even with four-point extrapolation used to 

FIGURE 9. Winglet strength f versus arclength (r along the line of intersection of the right half-wing 
and vortex sheet with the unit sphere, yo = n/4. is measured from the tip and is nega- 
tive on the wing and positive on the separated sheet. 
- - - - -, [ N , M  - I , ~ T ]  = [128,109,3];-- - - -, [N,  M- l,mr] = [128,4l, I]. 

, [ N , M  - 1,m7] = [128,211,6]; 
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and vortex sheet with the unit sphere, yo = n/4. is measured from the tip and is nega- 
tive on the wing and positive on the separated sheet. 
- - - - -, [ N , M  - I , ~ T ]  = [128,109,3];-- - - -, [N,  M- l,mr] = [128,4l, I]. 
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FIGURE 9. Winglet strength f versus arclength (r along the line of intersection of the right half-wing 
and vortex sheet with the unit sphere, yo = n/4. is measured from the tip and is nega- 
tive on the wing and positive on the separated sheet. 
- - - - -, [ N , M  - I , ~ T ]  = [128,109,3];-- - - -, [N,  M- l,mr] = [128,4l, I]. 

, [ N , M  - 1,m7] = [128,211,6]; 
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FIGURE 10. Detail of figure 9 near the wing tip, Y O  = n/4. -, 0, [ N ,  M - 1, m ~ ]  =[128,211,6] ; 
- _ - _  -, A, [ N , M  - 1 , m ~ ]  = [128,109,3]; - - - - -, X, [ N , M  - 1 , m ~ ]  = [128,41,1]. 

N M - 1  mT 

128 109 3 
128 109 3 
128 109 3 
128 211 6 
128 109 6 
128 43 1 
128 43 1 

Yo 
0.049087(2.8") 
0.261799( 15") 
0.523599(30") 
0.785398(45") 
1.04720(60") 
1.30900( 75") 
1.56207(89.5") 

n 
0.99628 
0.92728 
0.75441 
0.57837 
0.44010 
0.33643 
0.23975 

0" 
0.070612 
0.25109 
0.48041 
0.72451 
0.9681 1 
1.2006 
1.4003 

WU 

0.90765 
0.61406 
0.43040 
0.36856 
0.36308 
0.39342 
0.45947 

TABLE 4. Principal solution parameters for Scheme A solutions [ N , M  - l,mT = 11, various yo. 

estimate the starting approximation for the next yo, very small values of the increment 
in yo  of order 6y0 = O(0.01") were required for further calculation. Figure 11 shows 
perspective views of the conical wing-sheet surface for selected values of yo. The 
corresponding parameters n, 0" and yo are listed in table 4. 

We found no difficulty in continuation for yo > 45" to about yo = 62" for Scheme 
A. For larger yo however, continuation failed even with four-point extrapolation and 
very small 670. We found no indication of a turning point in yo which might indicate 
non-uniqueness, and no onset of large gradients in the solution parameters with 
increasing yo which might signal a change in the global character of solutions in this 
range of yo. In order to overcome this problem, a new [64,43,rnT = 11 solution was 
constructed at yo = 75" using the method of extrapolation from an M = 1 solution 
described in $6 in relation to yo = 45". It was found that this could be continued to 
yo = 89.9", but failed for yo = 90" owing to an apparently nearly singular Jacobian. 
We remark that the apex singularity vanishes at yo = 90". It was observed that the 
convergence of the Newton method degraded significantly as yo + 90" and this was 
associated with non-convergence to e = lo-'' (see (6.3)). For example the present 
'solution' for yo = 89.5" tabulated in table 4 and shown in perspective view in figure 
11 converged only to e w lo-'. Several attempts to find solutions for yo > 90" failed. 

Figure 12 shows the winglet strength f(a) for the solutions tabulated in table 4. In 
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Y"' 45" 

FIGURE 11. Perspective views of wing and conic 
yo as indicated. View angle and 

a1 vortex sheets for solutions of table 4. Values of 
scale differ slightly for each case. 

all cases df/do may be seen to vanish just inboard of the wing tip. Some insight into 
the behaviour of solutions in the vicinity of the tip may be obtained by appealing 
to the properties of a local solution in this region. This is outlined in Appendix C, 
where it is shown that the local form of the potential @ above and below the wing 
surface is related to the leading-order shape of the separated vortex sheet. These local 
identities are given by equations (C12) whilst the corresponding local sheet shape is 
given by (C14). The quantities C* were estimated by fitting polynomials of the form 
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f 
0.8 
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0.4 

FIGURE 12. Winglet strength f versus arclength u along the line of intersection of the right half-wing 
and vortex sheet with the unit sphere for solutions of table 4. Values of yo increase with f at c = 0. 

= 2.8", 15", 30", 45", 60", 75", 89.5". 

together with a corresponding polynomial for f(8), to the calculated values near the tip 
from the numerical solutions. In comparison with (6.1), note the inclusion of a term in 
(yo - O)1/2. Values of C* obtained by estimating U+ and a+ (see (C7)-(C8)) from 
the calculated coefficients and use of (C12), are tabulated in table 5. Also shown are 
corresponding values of C(sheet) obtained by a least-square fit of the form (C14) to 
the calculated values of 8, y on the first few points of the separated sheet near the tip. 
The agreement in table 5 is only fair. In order to test for power-law behaviour of the 
sheet shape near the tip, we plot, in figure 13, the shape in the form y versus 8 - y o  on 
log-log axes. In all cases the 3/2 power-law form of (C14) is evident near the tip. Table 
6 compares values of (df/da); calculated from the yo - 0 term in the polynomial 
for f and (dfldcr); = (gl - go)/(ol - 00)  obtained from the first sheet element. 
This discrepancy is one measure of the lack of consistency of our treatment of the 
separation region. Table 6 also gives values of (yo - 8) at which f shows a maximum 
near the wing tip and the value of the coefficient of (yo - 0)1/2 in the polynomial fit to 
f. In an exact solution this is expected to be zero. A finite, albeit numerically small, 
value indicates a residual singularity in the near-tip numerical solution, characteristic 
of attached flow. We suspect but are unable to prove that the presence of this small 
coefficient in our numerical results, not explicitly recognized in the formulation, may 
account for the somewhat poor performance of Newton's method in some cases. 

Appendix D gives an analysis of the asymptotic behaviour of the inner part of the 
rolled-up conical vortex sheet. The principal result (D10) shows that, surprisingly, the 
sheet shape, in local spherical coordinates with polar axis aligned with the axis of 
roll-up, is of power-law form with exponent (-1) independent of n. In order to test 
this we fitted a least-squares best-fit curve of the form 

to the inner four turns (so as to reduce end effects) of our six-turn solution for 
yo = 45". In (7.2) r, is the radius defined by (4.10), v is the pseudo-polar angle and 
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Yo C+ C- C(sheet) 
0.049087(2.8") 4.10 5.08 3.86 
0.261799(15") 3.51 3.34 3.22 
0.523599(30") 2.75 2.58 2.59 
0.785398(45") 2.10 2.13 2.23 
1.04720(60") 1.64 1.80 1.80 
1.30900(75") 1.76 2.16 1.66 
1.56207(89.5") 1.29 1.64 1.45 

TABLE 5 .  Identities. C* estimated by polynomial fit to near wing tip. C(sheet) estimated from 
fit of form y = C/(sin yo)-' (0 - to first two points on free vortex sheet. 

100 

10-1 

w 

10-2 

Yo  b0 
YO 

0.049087(2.8") -0.713 -0.657 0.523 x lo-' -0.241 x 
0 .261799(~)  -0.737 -0.705 0.609 x 10-2 -0.335 x 10-3 

0.523599(30") -0.513 -0.488 0.837 x lo-' -0.288 x 
0.785398(45") -0.326 -0.308 0.766 x -0.148 x 
1.04720(60") -0.205 -0.192 0.652 x lo-* -0.744 x 
1.30900(75") -0.130 -0.125 0.425 x -0.724 x 
1.56207(89.5") -0.083 -0.076 0.306 x -0.738 x 

TABLE 6. Selected properties of solutions at the wing tip. ( y o  - B),,, is the angle at which df /dcT = 0 
on the wing. bo is the calculated coefficient in a polynomial fit of degree 7 in y = (yo - 0) j I2  near 
the wing tip 
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FIGURE 14. Radius r of vortex sheet measured as the angle subtended at the sphere centre by a 
point on the sheet and the isolated vortex (axis of rollup), versus pseudo-polar angle v. yo = 45". 

, computation; - - - - -, five-parameter least-squares fit. 

A, PI, V O ,  v1, v2, 81 and ~2 are parameters to be determined from the least-squares fit. 
Note that ( rs ,  v )  are not identical with ( r ,  v) of (C10) but will be good approximations 
to these quantities for small r and large $3. From the least-squares fit we obtain 
p1 = 0.982, in satisfactory agreement with the exponent in (ClO), and A = 1.093, 
vo = -3.553, v1 = -0.216, v2 = 0.142, .sl = 0.038, €2 = 0.001. A five-parameter fit 
(62 = 0) gave p1 = 0.977. Figure 14 compares the variation of rs with v obtained from 
the numerical solution to (7.2) with the parameters given above. 

7.3. Topology of the (v~,v,)field 
One method of visualizing the flow produced by the eigensolutions is to plot the 
streamlines of the (ve,uly) velocity field on the surface of the unit sphere. This is done 
in figures 15 and 16 for yo = 2.8", 45" and 89.5" where streamlines on the hemisphere 
x > 0 are shown viewed along the positive x-axis. Also shown in figure 16 are the 
contours of @ on this hemisphere. Recall that v~ is proportional to n@. The topology 
of the streamline pattern can be characterized by the number, type and position of the 
critical points of the (ve, v,) field on the sphere and this in turn then gives information 
on how the flow approaches and leaves the wing-sheet surface from infinity. The 
detailed topology depends on yo. In all cases there are two sink-like spiral nodes at 
the vortex centres where the flow escapes to R = co. In figure 15, for yo = 2.8" there 
are saddle points on either side of the wing centre line and a saddle point on the 
symmetry axis above the wing-sheet system. Following back the streamlines from this 
saddle demarcates that part of the local flow which is entrained into the vortex from 
that which flows past the wing. 

When yo < 13" there were found to be three additional critical points lying on the 
intersection of the sphere with the (x,z)-plane. We denote these by C1, C2 and C3 
respectively: CI is source-like, C2 is sink-like and C3 is a saddle point. We denote 
their positions by the angles Zl, 8 2  and a3 where these angles are measured in the 
(x,z)-plane from the negative x-axis such that the bottom wing centre-line is at -180" 
and the top wing centreline is at 180"; see figure 17. These angles are shown plotted 
versus yo in figure 18, from which it may be seen that at small yo, C1 lies in the 
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FIGURE 15. Streamlines of the U Q , I + ,  velocity components on the hemisphere x > 0 and viewed 
along the x-axis, yo = 2.8". In addition to the critical points shown there is a source-like star node 
at 8 m 2.05, y = - x / 2  and a sink-like node at 8 ;2: 1.10, y' = n /2  

hemisphere z < 0 and CZ, C3 lie in the hemisphere z > 0. Note also that for yo small, 
c11 -Z3 w 180". When yo w 13", Cz and C3 approach each other and cancel. The 
topology then changes to one qualitatively like that shown for yo = 45" in figure 16. 
For this case all of the critical points on the unit sphere are visible. C1 has moved 
to B 130.7" ( 8 B 49.3"' y = -90') and all the streamlines from this node spiral 
into the vortex-sheet region. For yo = 30", C1 is at cCl = 90" (6' w 90", Y )  = -9OO). 
For some yo in the range 45" to 60", C1 'impacts' the wing and there is a transition 
to a pattern like that shown for yo  = 89.5" in figure 16 with a 'half-source' on the 
plane of symmetry at 6' = 0, y = 90". By comparison, for the strictly two-dimensional 
attached flow past a semi-infinite flat plate, yo = 90" ( n  = 0.5), the flow plotted in this 
way consists of a 'half-source' on the underside of the wing (0 = 0, t,o = -90") and a 
'half-sink' on the top side 6' = 0, w = -90". 

- 

7.4. The limit y o  + 0 ;  comparison with slender-body theory 
Figure 19 shows the variation with yo  of 1 - n and of yc, = sin#, COSY)", X ,  = 
sine, sin yo, the y (lateral) and z (normal to the wing) positions of the line vortex on 
the unit sphere, plotted as y+,/ tan yo, x?,/ tan Y O .  When 'jo + 0, 1 - n and x , /  tan yo 
appear to show power-law behaviour, and we find respectively 

(7.3) n = 1 - 0 . 3 1 9 ~ ; ~  

( yo  in radians) which can be compared with the attached-flow result (1.10), and 

(7.4) 

Equation (7.4) indicates that the angular extent of separated vortex sheets on the 
sphere is growing relative to the yo when yo is small; this trend is evident from figure 11. 
It in part accounts for our difficulty in extending our calculations below yo = 1.3". 

As we saw in equation (2.9), when yo is small and 0 is O(1) the potential of the 
wing element simplifies to 

(7.5) ~ ( 8 ,  y )  = B P;'(- cos 0) sin t,o, 
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FIFURE 16. (a, c) 00, u , ~  velocity components on the hemisphere x > 0 and viewed along the x-axis. 
(b, d )  Contours of CP on the same hemisphere. (a, b) yo = 45". (c, d )  yo = 89.5". The streamline 
pattern for yo = 45" exhibits a source-like star node at B w 0.86, 11) = -x/2. There are no critical 
points on the hemisphere x < 0 for either case. 

where B is a constant. Our calculations show that n + 1 as yo -+ 0, and thus it is 
instructive to examine (7.5) in this limit. We write n = 1 - f and remark that 

(7.6) 

where ~i = cos2(i0). To obtain the required result we approximate the coefficients 
in the hypergeometric function expansion to O ( E )  and sum the series which results 
to obtain 

( 7.7) 

P& cos 0) =2F1(-1 + f, 2 - f, 2; L o ) ,  

P?J- cos 6) = 4 - sin 8 + €A(&))  + O(c2),  

(7.8) A(u,)  = Tf& 1 - (1 - LO) log( 1 - u). 
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FIGURE 17. Angles al, Z2 and cI3 of the critical points CI, C2 and C3 in the (x,z)-plane. 

0 4 8 12 16 20 24 

- - - Y o  
FIGURE 18. Variation of a~, 82 and 83 with yo. ~ , a ] ;  - - - -  -, a2; ............ a3. 

Thus if we fix 8 and R and let E + 0 we have 

4 = iBRsiny  sinO$U(e), (7.9) 
or + =  IB  2 z + U(6) .  (7.10) 

This represents a uniform stream perpendicular to the plane of the winglet. Equation 
(7.10) shows that as yo + 0 so that n + 1, the eigenfunction for the attached flow at 
any fixed point resembles a uniform stream at an angle of incidence 90". We stress 
the non-uniform nature of the limit. For any fixed € 4 1  the expansion fails as 8 --+ 0 
or as R + 0 or R --+ a. 

It is straightforward to show that a uniform stream like the leading-order term of 
(7.10), when projected onto a ( vQ,~ , , , )  field on the unit sphere, produces source/sink 
critical points at 8 = 9o",w = +9P. In terms of the discussion of $7.3 these are 
equivalent, for the attached flow, to the critical points C1 and Cz. Our solutions to 
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FIGURE 19. Variation of (1 - n), wu/ tan yo and tan yo with yo. > (1 - 4; 

- _ - -  -, y+/tanyo; ..........., %,,/tanyo. 

the separated-flow problem for small yo  will have a far field which is that of an 
equivalent winglet plus the separated vortex sheets, and will thus approximate to a 
uniform stream at an effective angle of incidence. It was noted in $7.3 that when 
yo --+ 0, the difference B1 -E3 m 180", i.e. the C1 and C3 source/sink critical points are 
antipodal. This suggests that the line joining these critical points forms the direction 
of an effective free stream which has been 'manufactured' by the eigenfunction, like 
(7.7) for the attached flow. We therefore take this effective angle of incidence to be E l ,  

the angular position of C1 defined in 97.3. This in turn suggests a comparison with 
the results of slender-body theory based on B1. 

For flow with separation modelled by vortex sheets, the slender-body theory gives 
predictions, when 010, yo are small, of ~ J y o  and xv/yo as a function of aO/yo, where 010 
is the incidence angle (see Smith 1968). Table 7 shows comparison with the slender- 
body calculations of Pullin (1973), for small yo, using sinEl/ tan yo as the independent 
parameter (we take a. = a,). These calculations used only one turn of the vortex 
sheet compared with three turns in the present results and this may account for some 
of the discrepancies. The trends with increasing sin E l /  tan yo are qualitatively similar 
for both models. We remark that the range of sinall tanyo shown is larger than 
values in typical experiments, and so no experimental data are displayed. Note that 
we have used I1 as the effective angle of attack even for yo > 13", where the C, critical 
point has vanished. We have been unable to make comparisons with slender-body 
theory for yo less than 9" because results for slender-body theory at sufficiently large 
sinEl/tanyo do not appear to be available. Figure 18 indicates that when yo + 0, 
011 + 64" approximately compared to an effective angle of incidence of 90" for the 
attached flow implied by (7.10). The reason for this discrepancy is the apparent 
tendency z2, tan yo + cc when yo + 0 suggested by (7.3). This means that the angular 
extent of the vortex sheets are growing relative to yo and so the wing plus the vortex 
sheets cannot then be accurately approximated by (7.5) 

Finally, in Figures 20-22 are shown the lines of three vector fields on the half-wing 
y > 0 and on the first half-turn of the vortex sheet. The vortex lines, shown as 
plot (c) in each figure are everywhere orthogonal to the vector field which is the 
three-dimensional velocity difference across the surface of discontinuity. In each case 
the vortex lines show rapid directional changes near the wing edge and appear to 

- 
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- Sinai gL $0 xu 
tll - - - - 

tan YO tan 70 tan yo tan YO tan YO 
YO 

(deg.1 (deg.1 present slender body present slender body 
9 63.5 5.66 0.7756 0.695 0.7017 0.700 

10 64.3 5.11 0.7707 0.680 0.6666 0.680 
11 65.0 4.66 
12 66.0 4.30 
13 66.8 3.98 
14 67.5 3.71 
15 68.5 3.47 
16 69.8 3.27 
17 70.7 3.09 
18 71.8 2.93 
19 72.9 2.67 
20 74.0 2.64 

0.7676 
0.7643 
0.7624 
0.7609 
0.7598 
0.7590 
0.7582 
0.7576 
0.7567 
0.7557 

0.675 
0.670 
0.667 
0.669 
0.671 
0.672 
0.673 
0.674 
0.675 
0.677 

0.6351 
0.6067 
0.5807 
0.5569 
0.5349 
0.5145 
0.4955 
0.4779 
0.4614 
0.4460 

0.660 
0.635 
0.615 
0.595 
0.575 
0.555 
0.545 
0.530 
0.515 
0.505 

TABLE 7. Comparison of the y -  and z-positions of the isolated vortex compared with calculations 
(Pullin 1973) based on slender-body theory. 

leave the wing nearly normal to this edge. This direction would be exactly normal if 
df/do = 0 right at the edge rather than just inboard of the edge. 

8. Concluding remarks 
The present model, quite apart from features of real delta-wing flows such as 

secondary separation, is likely to be valid only on the forward part of the wing very 
near the apex. There is no way to determine the fraction of the maximum chord L in 
which our solution holds short of solving the full inviscid problem for the finite delta 
wing at incidence. Mathematically, our solution should supply a boundary condition 
to remove the near-apex singularity for this calculation. The case of a slender finite 
delta is special, because, as we have seen, our eigenfunction tends to a solution of the 
slender-body equations as yo -+ 0. However, as our results show, there is a mismatch 
between the angular positions of the vortices as given by our theory and the angular 
positions given by slender-body theory for small angles of incidence. This means that 
slender-body theory will give increasingly poor results as x / L  -+ 0 for small fixed yo. 
On the other hand, for fixed x / L  < 1, we expect the slender-body theory solution to 
hold in the limit yo -+ 0. We know of no established experimental data on the vortex 
locations over, say, the leading 25% of the wing centreline chord which may be able 
to test the predictions of the slender-body theory versus the present calculations. We 
hope that the present work will stimulate such experiments. 

Our present numerical methods, both Scheme A and Scheme B, use a simple linear- 
element representation of the separated vortex sheet and a lumped, single-element 
model of the innerportion. It is clear from the local solution given in Appendix C that 
there are non-analyticities present in the solution at the edge. Attempts to build these 
into the numerical schemes on the wing side have been made here, but no comparable 
method has been developed for handling the first few elements of the free vortex 
sheet and, in particular, the pressure continuity condition at the separation point. 
The crudeness of this numerical approach can be seen from the way in which the 
local identities of table 5 and the continuity of df /do at the edge, shown in table 6, 
are satisfied only approximately. The development of a more accurate representation 
of the vortex sheet which incorporates continuity of at least the first derivative at 
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FIGURE 20. Lines of three vector fields on a surface consisting of the half-wing y > 0 and the 
first half-turn of the separated vortex sheet, yo = 2.8". (a)  Streamlines of the upper (z = O+) wing 
surface and the corresponding side of the separated sheet. (b)  Streamlines of the lower (z = 0-) 
wing surface and the corresponding side of the separated sheet. (c) vortex lines. 

the nodes, the explicit inclusion of the non-analyticities on the sheet side into the 
numerical method, and an improved way of treating the inner rolled-up portion of 
the sheet, remain challenges for future work. 
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grant number GR/J02179, the National Science Foundation of the USA under Grant 
no CTS-9311811 and the Department of Energy of the USA under Grant No. 
DE-FG03-89ER25073. 
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FIGURE 21. As figure 20 but for 70 = 45". 

Appendix A. Geometry of the sheet element 
We must explain how we obtain the basic variables (al ,or2,pl,pz) defining the 

element E in terms of ( 0 1 , ~ ~ )  and (OZ,yZ), the spherical polar coordinates of its ex- 
tremities. 

Using (4.1), (4.3), and (4.4), we have 

cos 81 = cos c11 cos p1- sin al cos a3 sin p1, 

sin 81 cos yl = sin a1 cos p1 + cos al cos a3 sin p1, 

sin $1 sin y1 = sin a3 sin P I ;  

the same equations hold with (Ol,yl) t ( Q 2 , ~ i 2 )  and p ,  4 p2. 
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FIGURE 22. As figure 20 but for yo = 89.5" 

Solving the linear equations (Al) and (A2) for cospl and sinpl, we find 

sec c13 

(- sin a1 cos 0 1  + cos c11 sin 01 cos yl)' 
sinpl = 

and using (A3) gives 

(A 5 )  
sin el sin y1 

(- sin c11 cos O1 + cos cI1 sin el cos yl)' 
tana3 = 
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Similarly 

(A 6) 
sin 02 sin y2 

(- sin a1 cos 82 + cos a1 sin 0 2  cos y2) ' 
If we eliminate tana3 between (A5) and (A6) we obtain 

sin 01 sin O2 sin(lyl - y2) 

(cos 02 sin 01 sin y l  - cos 01 sin O2 sin y2). 

tana3 = 

(A 7) tanal = 

If we require -n/2 < a1 < n/2, (A7) fixes al uniquely. 

To ensure the correct branch of a1 is used, we write (A7) as 
We can now obtain a3 from (A6), making a3 unique by insisting that 0 < a3 < n. 

at = atan2 (sl, s2), 

where s1 = sin 0, sin 02 sin (y1 - y ~ )  and s2 = sin O1 sin ~1 cos 0 2  - cos O1 sin 02 sin y2 

and where atan2(*, *) is the standard FORTRAN library function. This ensures that ri 
varies continuously. 

Appendix B. Vortex force on the central terminal sheet element 
In this Appendix we show how (5.8), applied to the terminal element E M ,  can be 

used to derive the boundary condition for this element. We choose a control volume 
I/ whose projection on the unit sphere is in the form of a 'keyhole' surrounding EM 
and crossing at the join of EM and and whose radial extent is A R ;  see figure 5. 
Since H is constant away from E M  and is bounded in the sheet, the integral on the 
right-hand side of (5.8) vanishes. Thus the net vortex force vanishes. 

To derive the boundary condition, we have to evaluate the integral on the left-hand 
side of (5.8). We choose local axes such that z = y = 0 corresponds to the right-hand 
extremity of EAM (see figure 5) and introduce local polar coordinates by x = p cos x 
and y = p sin x where in this Appendix, p is a local radius. In these coordinates EM 
corresponds to -y < x 6 0, z = 0, where y is the angular extent of the element and 
the vorticity is given, in the same angular range by 

where 6 here represents the delta function. Equation (Bl) follows directly from the 
construction of $2. We thus have 

w A udV = 11 + 1 2 ,  (B 2) 
vi J 

where 

11 = gM-I dR 11 6 ( y ) 6 ( z )  (:A u )  dy dz, 
A i  

and 

1 2  = gM-1 n dR 6 ( z )  (a A u) d0 dz. // - 
A2 

We consider the integral I1 first. In the neighbourhood of A the velocity field is the 
sum of two contributions. There is a point vortex of strength gM-l and a uniform 
flow i^U, +j^V, +LIVE, which is the sum of contributions from the wing, the elements 
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El, B2,. . . ,EM as defined in $5.1, the elements El, E2,. . . , EM-1 and the self-induced 
velocity of EM - this is finite, since the element EM has uniform winglet strength and 
the logarithmic term is absent. 

The point vortex makes no contribution to Z1, which thus reduces to 

ZI = dRgM-1 (-;WE + ~ V E )  ; (B 5 )  

this is equivalent to the Kutta lift on the edge vortex. 
On evaluating the vector product, 1 2  reduces to 

A2 0 

I2 = dR n gM-1 SJ’ (î w cos x + jw sin x - 
-&Y 

where UR is the radial component of the velocity. But 

UR = nRn-’ Q = n (Qe + igM-lsign(z)). 

Thus 

1 2  = dR n gM-1 iw  cos x + j w  sin x - nkQe 1 (* 
--Y 

and on extracting the j- and k-components, we find that 

- WE + n i w sinxdx = 0, 

--Y 

and 
0 

VE - n2 1 QedX = 0. 

-7 

Now 

so the integral in (B9) is convergent. However the i^-component is infinite, due 
essentially to the infinite pressure on the axis of the tightly rolled portion of the sheet. 
This infinity can only be removed by viscosity, but we will not pursue this here. 

Finally, we approximate (B9) and (€310) for y -+ 0 and we find that 

and 

This approximation is consistent, since we expect the element EM to shrink as the 
resolution is increased. 

V, - n2 y ~ ~ ( 0 )  = 0. (B 13) 

Appendix C. Local solution near wing edge 
We seek a leading-order local solution to (1.6) valid close to the wing tip, and use 

local spherical coordinates e,@ with the polar axis 0 = 0 along the wing edge The 
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= n, I$ = --71 respectively. Let the shape upper/lower wing surfaces are defined by 
of the separating vortex sheet be 

I$ = F ( @ .  (C 1) 

The boundary conditions on the wing are 

The kinematic and dynamic (pressure) conditions on the separating sheet are 

1 a@ a m @  - - -- -- 
sin2 e a~ a0 8' 

on 
this equation becomes 

= F(8). Upon making the transformation x = cos 0, @ = exp(i rnq) 5 in (1,6), 

rn2 
6 + + ( n + 1 ) 6  = 0, 

d x  1 - x2 

the solution of which may be written as 

where a = n, b = n + 1, c = m + 1, T(..) denotes the gamma function and 2F1 is the 
hypergeometric function. 

To obtain solutions for 8+ and 5- above and below the wing respectively, we 
take linear combinations of the solutions for rn = 0, 1, i, 2, (omiting m = since 
this gives singular velocities at the tip), and retain terms in the expansion of the 
right-hand side of (C6) to O(a2). This gives 

@+ = A+ (I + 6 + . .) + U+ S cos I$ + a+ G3/2 sin (+p) + D+ e2 cos 21p, (C 7) 
@- = A- (1 + 2 e2 + . . .) + U- f i  cos W + CL 83/2 sin (+@I + D- o2 cos 2$, (C 8) 

where A,, U+, a+ and Dk are constants. It may be seen that (C7)-(C8) satisfies (C2) 
by construction. Applying (C3) on each side of the separated sheet gives 

( U+ - cos F + 4 

a b  -2 

d F 
d %  

-U,fl sin F + ;akg3j2 cos(5F) - 2 D+ Q2 sin 21p . . . 
(C 9) _ -  - 

sin(;F) + ~ ( e ) )  

C+ = C-. 

Now assume 

Then from (C9) 
F = C+ 01'2 + . * ,  (C 10) 

and consequently 

(C 12) 
%+ c+ = - = c- = k, 
U+ U- 

It may be verified that when the above is used in (C7)-(C8), the pressure condition 
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(C4) is satisfied to leading order. The separated sheet shape is then given by 

D. W Moore and D. I .  Pullin 

Thus the shape of the separating sheet and 6& are related by ((211) which we will refer 
to as the local identities. The constants U,  and x+ cannot, however, be determined by 
the local analysis but must be calculated as part ,f the global solution. Transforming 
from (8,qj) to global (0,y) coordinates gives for the shape 

(C 14) 
y = -" c+ (0 - y o ) 3 / 2 + .  . .. 

sm Y o  

while the winglet strength f = 6+ - 4- is, from (C7)-(C8) 

f ( e )  = A+ - A- + (u- - u,) (yo - e )  - (a+ + L) ( y o  - e)3/2 . . . . (C 15) 

Appendix D. Asymptotics of the rolled-up sheet 
We wish to describe the inner portion of the separated vortex sheet, and again 

employ local spherical coordinates R,8,qj with, in this case, the polar axis fi = 0 
along the axis of roll-up and the azimuthal angle q j  measured from an arbitrary plane 
which contains this axis. We seek a solution of the equations of motion in which all 
components of the velocity (UR, V S ,  yv) are independent of q j .  This allows the definition 
of a stream function Y and a vorticity 52, in terms of which the velocity components 
may be written 

The Navier-Stokes equations motion are then (see Goldstein 1965, p. 114) 

dS-2 - 1 a n . -  1 d(Y,D2Y) 
- cose - - smtl 

R dO 

where v is the kinematic viscosity. 
We seek a solution of the form 

and for inviscid flow, v = 0, (D3) then becomes 

ah 
( n + l ) Y  --=-n52--= = 0. ae ae 

Now assume that for 8 small, @ and 6 have the form 
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where Al ,  A2 are constants and pl, p2 exponents to be determined. Equation (C6)  gives 

( n + l ) p 2 - n p l  = 0. (D 8) 

Substitution of (D7) into (D2), expansion in powers of e, and the use of a dominant 
balance argument gives p1 = n + 1; ,u2 = n then follows from (D8). The velocity 
components are thus given by, for small 0, 

Use of 00 and vq in the kinematic condition (C3j then shows that when I$ is large, 
the rolled-up, conical-spiral vortex sheet is of the form 

r = R e  - @-I, (D 10) 

Its asymptotic shape is thus independent of the similarity exponent n. The above may 
be used as a starting point for the analysis of viscous effects in the rolled-up core. 

REFERENCES 
ABRAMOWITZ, A. & STEGUN, I. S. 1964 Handbook of Mathematical Functions. National Bureau 

BROWN, C. E. & MICHAEL, W. H. 1959 On slender delta wings with leading-edge separation. Proc. 

BROWN, S. N. & STEWARTSON, K. 1969 Flow near the apex of a plane delta wing. J .  Inst. Maths 

GLAUERT, H. 1946 7'he Elements of Aerofoil and Airscrew Theory. Cambridge University Press. 
GOLDSTEIN, S. (Ed.) 1965 Modern Developments in Fluid Dynamics, Vol 1. Dover. 
GUDERLY, G. 1942 Starke kugelige und zylinderische Verdichtungstoesse in der Naehe des Kugelmit- 

KIRKKOPRU, K. & RILEY, N. 1991 Secondary separation from a slender wing. J.  Engng Maths 25, 

KUCHEMANN, D. 1975 The Aerodynamic Design of Aircraji. Pergamon. 
MAGNUS, W. & OBERHETTINGER, F. 1954 Formulas and Theorem for  the Functions of Mathematicai 

Physics. Chelsea. 
F'ULLIN, D. I. 1973 A method for calculating inviscid separated flow about conical slender bodies. 

Aeronautical Research Laboratories (Australia) Aero. Rep. 238. 
PULLIN, D. I. 1978 The large-scale structure of self-similar rolled-up vortex sheets. J.  Fluid Mech. 

88, 401-430. 
RILEY, N. & SMITH, J. H. B. 1985 Prediction of leading-edge vortex behaviour to supplement the 

suction analogy. J .  Engng Maths 19, 157-192. 
SMITH, J. H. B. 1968 Improved calculations of leading-edge separation from slender delta wings. 

Proc R. Soc. Lond. A 306, 67--90. 
THOMPSON, D. H. 1975 A water tunnel study of vortex breakdown over wings with highly swept 

leading edges. Aeronautical Research Laboratories (Australia) Aero. Note 356. See also A R L  
Aero. Note 338 (1973). 

VAN DER VOOREN, A. I. 1980 A numerical investigation of the rolling up of vortex sheets. Proc. R. 
Soc. Lond. A 373, 67-92. 

of Standards. 

R. Soc. Lond. A 251, 200-217. 

Applies. 5, 206-216 (referred to herein as BS). 

tepunktes bzw der Zylinderachse. Luftfahrtforschung 19, 302-312. 

329-352. 




